技术学习分享_一航技术 技术资讯 ElasticSearch深度分页详解

ElasticSearch深度分页详解

广告位

1 前言

ElasticSearch是一个实时的分布式搜索与分析引擎,常用于大量非结构化数据的存储和快速检索场景,具有很强的扩展性。纵使其有诸多优点,在搜索领域远超关系型数据库,但依然存在与关系型数据库同样的深度分页问题,本文就此问题做一个实践性分析探讨

2 from + size分页方式

from + size分页方式是ES最基本的分页方式,类似于关系型数据库中的limit方式。from参数表示:分页起始位置;size参数表示:每页获取数据条数。例如:

GET /wms_order_sku/_search
{
"query": {
"match_all": {}
},
"from": 10,
"size": 20
}

该条DSL语句表示从搜索结果中第10条数据位置开始,取之后的20条数据作为结果返回。这种分页方式在ES集群内部是如何执行的呢?

在ES中,搜索一般包括2个阶段,Query阶段和Fetch阶段,Query阶段主要确定要获取哪些doc,也就是返回所要获取doc的id集合,Fetch阶段主要通过id获取具体的doc。

2.1 Query阶段

ElasticSearch深度分页详解

如上图所示,Query阶段大致分为3步:

  • 第一步:Client发送查询请求到Server端,Node1接收到请求然后创建一个大小为from + size的优先级队列用来存放结果,此时Node1被称为coordinating node(协调节点);
  • 第二步:Node1将请求广播到涉及的shard上,每个shard内部执行搜索请求,然后将执行结果存到自己内部的大小同样为from+size的优先级队列里;
  • 第三步:每个shard将暂存的自身优先级队列里的结果返给Node1,Node1拿到所有shard返回的结果后,对结果进行一次合并,产生一个全局的优先级队列,存在Node1的优先级队列中。(如上图中,Node1会拿到(from + size) * 6 条数据,这些数据只包含doc的唯一标识_id和用于排序的_score,然后Node1会对这些数据合并排序,选择前from + size条数据存到优先级队列);

2.2 Fetch阶段

ElasticSearch深度分页详解

如上图所示,当Query阶段结束后立马进入Fetch阶段,Fetch阶段也分为3步:

  • 第一步:Node1根据刚才合并后保存在优先级队列中的from+size条数据的id集合,发送请求到对应的shard上查询doc数据详情;
  • 第二步:各shard接收到查询请求后,查询到对应的数据详情并返回为Node1;(Node1中的优先级队列中保存了from + size条数据的_id,但是在Fetch阶段并不需要取回所有数据,只需要取回从from到from + size之间的size条数据详情即可,这size条数据可能在同一个shard也可能在不同的shard,因此Node1使用multi-get来提高性能)
  • 第三步:Node1获取到对应的分页数据后,返回给Client;

2.3 ES示例

依据上述我们对from + size分页方式两阶段的分析会发现,假如起始位置from或者页条数size特别大时,对于数据查询和coordinating node结果合并都是巨大的性能损耗。

例如:索引 wms_order_sku 有1亿数据,分10个shard存储,当一个请求的from = 1000000, size = 10。在Query阶段,每个shard就需要返回1000010条数据的_id和_score信息,而coordinating node就需要接收10 * 1000010条数据,拿到这些数据后需要进行全局排序取到前1000010条数据的_id集合保存到coordinating node的优先级队列中,后续在Fetch阶段再去获取那10条数据的详情返回给客户端。

分析:这个例子的执行过程中,在Query阶段会在每个shard上均有巨大的查询量,返回给coordinating node时需要执行大量数据的排序操作,并且保存到优先级队列的数据量也很大,占用大量节点机器内存资源。

2.4 实现示例

ElasticSearch深度分页详解

private SearchHits getSearchHits(BoolQueryBuilder queryParam, int from, int size, String orderField) {
SearchRequestBuilder searchRequestBuilder = this.prepareSearch();
searchRequestBuilder.setQuery(queryParam).setFrom(from).setSize(size).setExplain(false);
if (StringUtils.isNotBlank(orderField)) {
searchRequestBuilder.addSort(orderField, SortOrder.DESC);
}
log.info("getSearchHits searchBuilder:{}", searchRequestBuilder.toString());
SearchResponse searchResponse = searchRequestBuilder.execute().actionGet();
log.info("getSearchHits searchResponse:{}", searchResponse.toString());
return searchResponse.getHits();
}

2.5 小结

其实ES对结果窗口的返回数据有默认10000条的限制(参数:index.max_result_window = 10000),当from + size的条数大于10000条时ES提示可以通过scroll方式进行分页,非常不建议调大结果窗口参数值。

ElasticSearch深度分页详解

3 Scroll分页方式

scroll分页方式类似关系型数据库中的cursor(游标),首次查询时会生成并缓存快照,返回给客户端快照读取的位置参数(scroll_id),后续每次请求都会通过scroll_id访问快照实现快速查询需要的数据,有效降低查询和存储的性能损耗。

3.1 执行过程

scroll分页方式在Query阶段同样也是coordinating node广播查询请求,获取、合并、排序其他shard返回的数据_id集合,不同的是scroll分页方式会将返回数据_id的集合生成快照保存到coordinating node上。Fetch阶段以游标的方式从生成的快照中获取size条数据的_id,并去其他shard获取数据详情返回给客户端,同时将下一次游标开始的位置标识_scroll_id也返回。这样下次客户端发送获取下一页请求时带上scroll_id标识,coordinating node会从scroll_id标记的位置获取接下来size条数据,同时再次返回新的游标位置标识scroll_id,这样依次类推直到取完所有数据。

3.2 ES示例

第一次查询时不需要传入_scroll_id,只要带上scroll的过期时间参数(scroll=1m)、每页大小(size)以及需要查询数据的自定义条件即可,查询后不仅会返回结果数据,还会返回_scroll_id。

GET /wms_order_sku2021_10/_search?scroll=1m
{
"query": {
"bool": {
"must": [
{
"range": {
"shipmentOrderCreateTime": {
"gte": "2021-10-04 00:00:00",
"lt": "2021-10-15 00:00:00"
}
}
}
]
}
},
"size": 20
}

ElasticSearch深度分页详解

第二次查询时不需要指定索引,在JSON请求体中带上前一个查询返回的scroll_id,同时传入scroll参数,指定刷新搜索结果的缓存时间(上一次查询缓存1分钟,本次查询会再次重置缓存时间为1分钟)

GET /_search/scroll
{
"scroll":"1m",
"scroll_id" : "DnF1ZXJ5VGhlbkZldGNoIAAAAAJFQdUKFllGc2E4Y2tEUjR5VkpKbkNtdDFMNFEAAAACJj74YxZmSWhNM2tVbFRiaU9VcVpDUWpKSGlnAAAAAiY--F4WZkloTTNrVWxUYmlPVXFaQ1FqSkhpZwAAAAJMQKhIFmw2c1hwVFk1UXppbDhZcW1za2ZzdlEAAAACRUHVCxZZRnNhOGNrRFI0eVZKSm5DbXQxTDRRAAAAAkxAqEcWbDZzWHBUWTVRemlsOFlxbXNrZnN2UQAAAAImPvhdFmZJaE0za1VsVGJpT1VxWkNRakpIaWcAAAACJ-MhBhZOMmYzWVVMbFIzNkdnN1FwVXVHaEd3AAAAAifjIQgWTjJmM1lVTGxSMzZHZzdRcFV1R2hHdwAAAAIn4yEHFk4yZjNZVUxsUjM2R2c3UXBVdUdoR3cAAAACJ5db8xZxeW5NRXpHOFR0eVNBOHlOcXBGbWdRAAAAAifjIQkWTjJmM1lVTGxSMzZHZzdRcFV1R2hHdwAAAAJFQdUMFllGc2E4Y2tEUjR5VkpKbkNtdDFMNFEAAAACJj74YhZmSWhNM2tVbFRiaU9VcVpDUWpKSGlnAAAAAieXW_YWcXluTUV6RzhUdHlTQTh5TnFwRm1nUQAAAAInl1v0FnF5bk1Fekc4VHR5U0E4eU5xcEZtZ1EAAAACJ5db9RZxeW5NRXpHOFR0eVNBOHlOcXBGbWdRAAAAAkVB1Q0WWUZzYThja0RSNHlWSkpuQ210MUw0UQAAAAImPvhfFmZJaE0za1VsVGJpT1VxWkNRakpIaWcAAAACJ-MhChZOMmYzWVVMbFIzNkdnN1FwVXVHaEd3AAAAAkVB1REWWUZzYThja0RSNHlWSkpuQ210MUw0UQAAAAImPvhgFmZJaE0za1VsVGJpT1VxWkNRakpIaWcAAAACTECoShZsNnNYcFRZNVF6aWw4WXFtc2tmc3ZRAAAAAiY--GEWZkloTTNrVWxUYmlPVXFaQ1FqSkhpZwAAAAJFQdUOFllGc2E4Y2tEUjR5VkpKbkNtdDFMNFEAAAACRUHVEBZZRnNhOGNrRFI0eVZKSm5DbXQxTDRRAAAAAiY--GQWZkloTTNrVWxUYmlPVXFaQ1FqSkhpZwAAAAJFQdUPFllGc2E4Y2tEUjR5VkpKbkNtdDFMNFEAAAACJj74ZRZmSWhNM2tVbFRiaU9VcVpDUWpKSGlnAAAAAkxAqEkWbDZzWHBUWTVRemlsOFlxbXNrZnN2UQAAAAInl1v3FnF5bk1Fekc4VHR5U0E4eU5xcEZtZ1EAAAACTECoRhZsNnNYcFRZNVF6aWw4WXFtc2tmc3ZR"
}

ElasticSearch深度分页详解

3.3 实现示例

ElasticSearch深度分页详解

protected <T> Page<T> searchPageByConditionWithScrollId(BoolQueryBuilder queryParam, Class<T> targetClass, Page<T> page) throws IllegalAccessException, InstantiationException, InvocationTargetException {
SearchResponse scrollResp = null;
String scrollId = ContextParameterHolder.get("scrollId");
if (scrollId != null) {
scrollResp = getTransportClient().prepareSearchScroll(scrollId).setScroll(new TimeValue(60000)).execute()
.actionGet();
} else {
logger.info("基于scroll的分页查询,scrollId为空");
scrollResp = this.prepareSearch()
.setSearchType(SearchType.QUERY_AND_FETCH)
.setScroll(new TimeValue(60000))
.setQuery(queryParam)
.setSize(page.getPageSize()).execute().actionGet();
ContextParameterHolder.set("scrollId", scrollResp.getScrollId());
}
SearchHit[] hits = scrollResp.getHits().getHits();
List<T> list = new ArrayList<T>(hits.length);
for (SearchHit hit : hits) {
T instance = targetClass.newInstance();
this.convertToBean(instance, hit);
list.add(instance);
}
page.setTotalRow((int) scrollResp.getHits().getTotalHits());
page.setResult(list);
return page;
}

3.4 小结

scroll分页方式的优点就是减少了查询和排序的次数,避免性能损耗。缺点就是只能实现上一页、下一页的翻页功能,不兼容通过页码查询数据的跳页,同时由于其在搜索初始化阶段会生成快照,后续数据的变化无法及时体现在查询结果,因此更加适合一次性批量查询或非实时数据的分页查询。

启用游标查询时,需要注意设定期望的过期时间(scroll = 1m),以降低维持游标查询窗口所需消耗的资源。注意这个过期时间每次查询都会重置刷新为1分钟,表示游标的闲置失效时间(第二次以后的查询必须带scroll = 1m参数才能实现)

4 Search After分页方式

Search After分页方式是ES 5新增的一种分页查询方式,其实现的思路同Scroll分页方式基本一致,通过记录上一次分页的位置标识,来进行下一次分页数据的查询。相比于Scroll分页方式,它的优点是可以实时体现数据的变化,解决了查询快照导致的查询结果延迟问题。

4.1 执行过程

Search After方式也不支持跳页功能,每次查询一页数据。第一次每个shard返回一页数据(size条),coordinating node一共获取到 shard数 * size条数据 , 接下来coordinating node在内存中进行排序,取出前size条数据作为第一页搜索结果返回。当拉取第二页时,不同于Scroll分页方式,Search After方式会找到第一页数据被拉取的最大值,作为第二页数据拉取的查询条件。

这样每个shard还是返回一页数据(size条),coordinating node获取到 shard数 * size条数据进行内存排序,取得前size条数据作为全局的第二页搜索结果。
后续分页查询以此类推…

4.2 ES示例

第一次查询只传入排序字段和每页大小size

GET /wms_order_sku2021_10/_search
{
"query": {
"bool": {
"must": [
{
"range": {
"shipmentOrderCreateTime": {
"gte": "2021-10-12 00:00:00",
"lt": "2021-10-15 00:00:00"
}
}
}
]
}
},
"size": 20,
"sort": [
{
"_id": {
"order": "desc"
}
},{
"shipmentOrderCreateTime":{
"order": "desc"
}
}
]
}

ElasticSearch深度分页详解

接下来每次查询时都带上本次查询的最后一条数据的 _id 和 shipmentOrderCreateTime字段,循环往复就能够实现不断下一页的功能

GET /wms_order_sku2021_10/_search
{
"query": {
"bool": {
"must": [
{
"range": {
"shipmentOrderCreateTime": {
"gte": "2021-10-12 00:00:00",
"lt": "2021-10-15 00:00:00"
}
}
}
]
}
},
"size": 20,
"sort": [
{
"_id": {
"order": "desc"
}
},{
"shipmentOrderCreateTime":{
"order": "desc"
}
}
],
"search_after": ["SO-460_152-1447931043809128448-100017918838",1634077436000]
}

ElasticSearch深度分页详解

4.3 实现示例

ElasticSearch深度分页详解

ElasticSearch深度分页详解

public <T> ScrollDto<T> queryScrollDtoByParamWithSearchAfter(
BoolQueryBuilder queryParam, Class<T> targetClass, int pageSize, String afterId,
List<FieldSortBuilder> fieldSortBuilders) {
SearchResponse scrollResp;
long now = System.currentTimeMillis();
SearchRequestBuilder builder = this.prepareSearch();
if (CollectionUtils.isNotEmpty(fieldSortBuilders)) {
fieldSortBuilders.forEach(builder::addSort);
}
builder.addSort("_id", SortOrder.DESC);
if (StringUtils.isBlank(afterId)) {
log.info("queryScrollDtoByParamWithSearchAfter基于afterId的分页查询,afterId为空");
SearchRequestBuilder searchRequestBuilder = builder.setSearchType(SearchType.DFS_QUERY_THEN_FETCH)
.setQuery(queryParam).setSize(pageSize);
scrollResp = searchRequestBuilder.execute()
.actionGet();
log.info("queryScrollDtoByParamWithSearchAfter基于afterId的分页查询,afterId 为空,searchRequestBuilder:{}", searchRequestBuilder);
} else {
log.info("queryScrollDtoByParamWithSearchAfter基于afterId的分页查询,afterId=" + afterId);
Object[] afterIds = JSON.parseObject(afterId, Object[].class);
SearchRequestBuilder searchRequestBuilder = builder.setSearchType(SearchType.DFS_QUERY_THEN_FETCH)
.setQuery(queryParam).searchAfter(afterIds).setSize(pageSize);
log.info("queryScrollDtoByParamWithSearchAfter基于afterId的分页查询,searchRequestBuilder:{}", searchRequestBuilder);
scrollResp = searchRequestBuilder.execute()
.actionGet();
}
SearchHit[] hits = scrollResp.getHits().getHits();
log.info("queryScrollDtoByParamWithSearchAfter基于afterId的分页查询,totalRow={}, size={}, use time:{}", scrollResp.getHits().getTotalHits(), hits.length, System.currentTimeMillis() - now);
now = System.currentTimeMillis();

List<T> list = new ArrayList<>();
if (ArrayUtils.getLength(hits) > 0) {
list = Arrays.stream(hits)
.filter(Objects::nonNull)
.map(SearchHit::getSourceAsMap)
.filter(Objects::nonNull)
.map(JSON::toJSONString)
.map(e -> JSON.parseObject(e, targetClass))
.collect(Collectors.toList());
afterId = JSON.toJSONString(hits[hits.length - 1].getSortValues());
}
log.info("es数据转换bean,totalRow={}, size={}, use time:{}", scrollResp.getHits().getTotalHits(), hits.length, System.currentTimeMillis() - now);
return ScrollDto.<T>builder().scrollId(afterId).result(list).totalRow((int) scrollResp.getHits().getTotalHits()).build();
}

4.4 小结

Search After分页方式采用记录作为游标,因此Search After要求doc中至少有一条全局唯一变量(示例中使用_id和时间戳,实际上_id已经是全局唯一)。Search After方式是无状态的分页查询,因此数据的变更能够及时的反映在查询结果中,避免了Scroll分页方式无法获取最新数据变更的缺点。同时Search After不用维护scroll_id和快照,因此也节约大量资源。

5 总结思考

5.1 ES三种分页方式对比总结

ElasticSearch深度分页详解

  • 如果数据量小(from+size在10000条内),或者只关注结果集的TopN数据,可以使用from/size 分页,简单粗暴
  • 数据量大,深度翻页,后台批处理任务(数据迁移)之类的任务,使用 scroll 方式
  • 数据量大,深度翻页,用户实时、高并发查询需求,使用 search after 方式

5.2 个人思考

  • 在一般业务查询页面中,大多情况都是10-20条数据为一页,10000条数据也就是500-1000页。正常情况下,对于用户来说,有极少需求翻到比较靠后的页码来查看数据,更多的是通过查询条件框定一部分数据查看其详情。因此在业务需求敲定初期,可以同业务人员商定1w条数据的限定,超过1w条的情况可以借助导出数据到Excel表,在Excel表中做具体的操作。
  • 如果给导出中心返回大量数据的场景可以使用Scroll或Search After分页方式,相比之下最好使用Search After方式,既可以保证数据的实时性,也具有很高的搜索性能。
  • 总之,在使用ES时一定要避免深度分页问题,要在跳页功能实现和ES性能、资源之间做一个取舍。必要时也可以调大max_result_window参数,原则上不建议这么做,因为1w条以内ES基本能保持很不错的性能,超过这个范围深度分页相当耗时、耗资源,因此谨慎选择此方式。

作者:何守优

本文来自网络,不代表技术学习分享_一航技术立场,转载请注明出处。

作者: 一航技术

上一篇
下一篇
广告位

发表回复

返回顶部